
EE 230
Lecture 25

Waveform Generators
- Sinusoidal Oscillators

The Wein-Bridge Structure



Quiz 19
The circuit shown has been proposed as a sinusoidal oscillator. Determine 
the oscillation criteria and the frequency of oscillation. Assume the op amps 
are ideal. 
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The circuit shown has been proposed as a sinusoidal oscillator. Determine 
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Solution:



Sinusoidal Oscillation

A circuit with a single complex conjugate pair of poles on the imaginary axis at 
+/- jβ will have a sinusoidal output given by

( ) ˆ )OUT kX t =2 a sin( t+   β θ

The frequency of oscillation will be β rad/sec but the amplitude and phase are  
indeterminate

Review from Last Time:



Sinusoidal Oscillation Criteria

A network that has a single complex conjugate 
pair on the imaginary axis at        and no RHP 
poles will have a sinusoidal output of the form 
X0(t)=Asin(ωt+θ)

jω±

A and θ can not be determined by properties of the linear 
network

Review from Last Time:



Characteristic Equation Requirements for 
Sinusoidal Oscillation

If the characteristic equation D(s) has exactly 
one pair of roots on the imaginary axis and no 
roots in the RHP, the network will have a 
sinusoidal signal on every nongrounded node.  

OUT

Characteristic Equation Oscillation Criteria:

Review from Last Time:



Characteristic Equation Oscillation Criteria (CEOC)

If the characteristic equation D(s) has exactly one pair of roots on the     
imaginary axis and no roots in the RHP, the network will have a sinusoidal  
signal on every nongrounded node

Barkhausen Oscillation Criteria

A feedback amplifier will have sustained oscillation if Aβ = -1

Differences:

1.Barkhausen requires a specific feedback amplifier architecture

2.Sustained oscillation says nothing about wave shape 

Challenge:

It is impossible to place the poles of any network exactly on the 
imaginary axis

Sinusoidal Oscillator Design Approach:

Place on pair of cc poles slightly in RHP and have no other RHP poles

With this approach, will observe minor distortion of output waveforms

Review from Last Time:

Relationship between Barkhausen Criteria and 
Characteristic Equation Criteria for Sinusoidal Oscillation



Review from Last Time:

Sinusoidal Oscillator Design Strategy

Build networks with exactly one pair of complex conjugate roots 
slightly in the RHP and use nonlinearities in the amplifier part of the 
network to limit the amplitude of the output ( i.e p =α ± jβ α is very 
small but positive)

Nonlinearity will cause a small amount of distortion 

Frequency of oscillation will be very close to but deviate slightly from β

Must be far enough in the RHP so the process and temperature 
variations do not cause movement back into LHP because if that 
happened, oscillation would cease!



Sinusoidal Oscillator Design
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Consider the following circuit:
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Oscillation Condition:
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2 1
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This is achieved by having K satisfy the equation

Review from Last Time:



Sinusoidal Oscillator Design

Consider the special practical case where
R1=R2=R and C1=C2=C:

OSC
1ω  = 

R C

1 31 2

2 1

C RK +
C R

= + =

This is termed the Wein Bridge Oscillator

One of the most popular sinusoidal oscillator structures

Practically make K slightly larger than 3 and judiciously manage the 
nonlinearities to obtain low distortion

Review from Last Time:



The Wein-Bridge Oscillator
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Another Perspective:



The Wein-Bridge Oscillator

1 31 2

2 1

C RK +
C R

= + =

Another Perspective:

Note this is a feedback amplifier with gain K 
and 

1

1 2

Zβ =
 Z +Z

Lets check Barkhausen Criteria for this circuit



The Wein-Bridge Oscillator

1 31 2

2 1

C RK +
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= + =

Setting Kβ= -1, obtain

1

1 2

Zβ =
Z +Z

Lets check Barkhausen Criteria for this circuit
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The Wein-Bridge Oscillator

1 31 2

2 1

C RK +
C R

= + =

Putting in s= jω, obtain the Barkhausen criteria

1

1 2

Zβ =
Z +Z

Lets check Barkhausen Criteria for this circuit

( )1
2

1 2 1 2 1 2 1 1 2 2 11-ω R R C C +j ω R C +R C +R C KR C =0⎡ ⎤ −⎡ ⎤⎣ ⎦⎣ ⎦

Solving, must have (from the imaginary part) 

1 1 2

2 1

C RK +
C R

= +

And this will occur at the oscillation frequency of (from real part)

OSC
1 2 1 2

1ω  =  
R R C C



The Wein-Bridge Oscillator
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Basic implementation for the equal R, equal C case



The Wein-Bridge Oscillator

OSC
1ω  =  

R C

Amplifier Transfer Characteristics

IN

3
1

OUT

SATL

SATH

Slope slightly larger than 3
Amplitude of oscillation will be approximately VSATH (assuming VSATH=-VSTATL)
Distortion introduced by the abrupt nonlinearities when clipping occurs



The Wein-Bridge Oscillator

OSC
1ω  =  

R C

Amplifier Transfer Characteristics

VIN

3
1

VOUT

VSATL

VSATH

VIN

3
1

VOUT
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Abrupt nonlinearities cause distortion

Better performance (reduced nonlinearity) can be obtained by introducing less 
abrupt nonlinearities to limit amplitude



• VSATH and VSATL strongly dependent upon op amp bias voltages VDD and VSS

• This nonlinearity in the real amplifier will limit the output signal amplitude

• Can cause rather significant distortion

1R

( ) 12 R+ ε

• Amplifier gain changes from 3 + ε for  V1 < VIN < V2 to  0 for VIN<V1 or VIN>V2

Amplitude Limiting in Noninverting Amplifier Structure

Observe:



Obtain slope >3 for –V1 < VIN < V1 and slope <3 for V1<VIN<V2 and for –V2< VIN< -V1

Limit VIN to interval   –V2 < VIN < V2

– If possible, hard nonlinearity associated with amplifier saturation will not be excited

– Dramatic reduction in distortion is anticipated

Can we do this?



Consider:

NLD Transfer Characteristics

VD = VXX for      ID > 0

ID = 0          for      VD < VXX

(will assume VXX > 0 )



Consider:

Case 1:  ID1 = 0  and  ID2 = 0

VD = VXX for      ID > 0

ID = 0          for      VD < VXX

Solution:
( )2 3

OUT IN
1

R R
V 1 V

R
⎡ ⎤+

= +⎢ ⎥
⎣ ⎦

Must determine where this part of the solution is valid

Analysis of Amplifier Circuit:



Valid for

VR3 > - VXX and VR3 <  VXX
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Graph of solution for Case 1



Case 2: NLD2 is in the conducting state (VD2 = VXX)

NLD1 is in the nonconducting state (ID1 = 0)
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Solution for Case 2 Continued

Applying superposition we obtain

But: VD1= -VXX and
OUT IN XX XX

D2

2 3

V -V -V VI = -
R R

Substituting the validity conditions, we obtain

-VXX < 0   and OUT IN XX XX

2 3

V -V -V V- >0
R R

The first of these inequalities is valid provided VXX>0 and substituting the expression for VOUT into the 
second, we obtain after simplification
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Solution for Case 2 Continued

Assuming VXX>0, the region where Case 2 is valid is thus determined by the second inequality

VXX>0



Case 3: NLD2 is nonconducting   (ID2 = 0)

NLD1 is  conducting        (VD1 = VXX)
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Solution for Case 3 continued:

This solution is valid for VD2 < 0 and ID1 > 0

1
IN XX
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RV V
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< −

But: VD2= -VXX and
IN OUT XX XX

D1

2 3

V -V -V VI = -
R R

Substituting the validity conditions, we obtain

-VXX < 0   and IN OUT XX XX

2 3

V -V -V V- >0
R R

The first of these inequalities is valid provided VXX>0 and substituting the expression for VOUT into the 
second, we obtain after simplification
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Case 4: NLD1 and NLD2 both conducting  (this case never 
happens and need not be considered since we already 
have a solution for all inputs)

Thus, if we neglect the saturation of the op amp, we can write an expression for 
the output as

This is shown graphically, along with the saturation of the op amp, on the 
following slide
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Overall Transfer Characteristics



Overall Transfer Characteristics

VD = VXX for     ID > 0

ID = 0       for   VD < VXX

If VXX=0.6V, this represents a good approximation to the transfer 
characteristics of a silicon diode.  We thus can replace the NLD with a diode  
and obtain the amplitude stabilized Wien-Bridge oscillator



Wein – Bridge Oscillator with Amplitude Stabilization

R2 <  2R1

R2 + R3 >  2R1
1

RCOSC
ω ≅



Wein – Bridge Oscillator 

R2 <  2R1

R2 + R3 >  2R1

1
RCOSC

ω ≅

– an alternative view of same circuit using feedback concepts
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R
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1+RCs Cs

⎡ ⎤
⎢ ⎥⎣ ⎦=

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

[ ]2 3

FB

1

R + R
A =1 +

R

( ) [ ]
( )

2 FB
2

3-A 1D s =s +s +
RC RC

Note double inversion

FB
A =3+ε



End of Lecture 25


